
4.3: Using Functions to Automate Tasks

Introduction

In this lesson, we’ll learn how to write functions in R. Functions are essential for automating
tasks and making your code more efficient and reusable. Let’s get started!

What is a function?

We’ve been using functions quite a lot in the course, but let’s remind ourselves exactly what
a function actually is.

A function is a block of code designed to perform a specific task. A function is executed
when it is called. This means that the block of code is run every time you use the function!

A function takes specific arguments as input, processes them, and returns the output.

1

We’ve used a lot of built-in functions already, like the mean() function.

Now, we are going to write our own, user-defined functions!

Writing Our First Function

Following the syntax from the image above, let’s write a function called add_numbers that
takes two numbers as arguments and returns their sum.

An addition function
add_numbers <- function(x, y) {
z <- x + y
return(z)

}

Notice that we didn’t put any actual numbers in the function! Instead, we used generic
(undefined) arguments (e.g., x and y) to represent the values that we will eventually supply
to the function when we execute it.

Using our undefined arguments, we set up a statement (or series of statements) for the function
to perform: add x and y together and save that value as an object called z.

We use the return() function to indicate that z is the value we want the add_numbers function
to give back to us when it is executed.

Let’s test our function with numbers, now!

Use our new function
add_numbers(5, 5)

[1] 10

Store our result
sum <- add_numbers(10, 10)

View our result
sum

[1] 20

2

Let’s Practice

Now try to write a function called multiply_numbers that takes three numbers as arguments
and returns the product.

Make sure to test your function, and remember a function should have a name, a list of
arguments, and return something.

Multiplication function
multiply_numbers <- function(x, y, z) {
a <- x * y * z
return(z)

}

Test function
multiply_numbers(1, 3, 3)

[1] 3

Exercise 1: Simple Function

Objective: Write a function called inspect that takes a data frame as an argument and
prints the head and tail of the data frame.

Setup:

Load in tidyverse first!
library(tidyverse)

Warning: package 'tidyverse' was built under R version 4.2.3

Warning: package 'ggplot2' was built under R version 4.2.3

Warning: package 'tibble' was built under R version 4.2.3

Warning: package 'tidyr' was built under R version 4.2.2

Warning: package 'readr' was built under R version 4.2.3

Warning: package 'purrr' was built under R version 4.2.3

3

Warning: package 'dplyr' was built under R version 4.2.3

Warning: package 'stringr' was built under R version 4.2.2

Warning: package 'forcats' was built under R version 4.2.2

Warning: package 'lubridate' was built under R version 4.2.3

Load the dataframe into your environment by reading the hairgrass_data.csv file
hairgrass <- read_csv('data/hairgrass_data.csv')

Rows: 480 Columns: 10
-- Column specification --
Delimiter: ","
dbl (10): location_ID, soil_pH, p_content, percent_soil_rock, max_windspeed_...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Before we attempt to write this function, you’ll need to know about the print() function.

In R, if you have multiple expressions (in our case, head and tail) and you want to see the
output of each, you need to explicitly print them using the print() function. Otherwise, R
will just show the last expression it ran.

Demonstration of the print function
print(mean(hairgrass$soil_pH))

[1] 5.544271

Now we can start to write our function! Write a function that prints the head and tail of the
dataframe. If you’re up for an extra challenge, have the function print out the first 10 and last
10 rows (instead of 6 and 6).

Write your function here
Remember to use print!

load_and_inspect <- function(dataframe) {

4

Print first 10 rows
print(head(dataframe, 10))

Print last 10 rows
print(tail(dataframe, 10))

}

Test your function with the hairgrass data frame.

Test our function on hairgrass data
load_and_inspect(hairgrass)

A tibble: 10 x 10
location_ID soil_pH p_content percent_soil_rock max_windspeed_knots

<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 4.9 5.49 44.5 14.9
2 2 6.94 8.53 50.5 11.0
3 3 4.36 0.0801 88.5 26.5
4 4 5.41 1.98 61 23.6
5 5 5.32 6.6 67.1 27.4
6 6 6.49 4.09 42.8 22.6
7 7 5.83 3.05 82.7 2.90
8 8 4.91 5.83 78.5 17.9
9 9 5.73 4.35 48.5 20.7

10 10 5.61 5.54 54.4 7.49
i 5 more variables: avg_uv_index <dbl>, avg_summer_temp <dbl>,
n_content <dbl>, hairgrass_density_m2 <dbl>, penguin_density_5m2 <dbl>
A tibble: 10 x 10

location_ID soil_pH p_content percent_soil_rock max_windspeed_knots
<dbl> <dbl> <dbl> <dbl> <dbl>

1 471 5.75 2.66 52.9 21.8
2 472 6.28 1.6 64.3 6.40
3 473 2.69 7.35 68.2 6.24
4 474 6.36 3.76 85.4 12.7
5 475 4.57 7.96 96.2 25.5
6 476 6.1 0.448 94.5 5.00
7 477 4.72 4.86 70.3 12.3
8 478 6.41 3.8 86.9 4.86
9 479 6.02 4.62 12 7.23

10 480 3.64 2.32 94.9 3.94
i 5 more variables: avg_uv_index <dbl>, avg_summer_temp <dbl>,

5

n_content <dbl>, hairgrass_density_m2 <dbl>, penguin_density_5m2 <dbl>

Exercise 2: Linear Regression Function

Objective: Develop a function that performs linear regression between two columns of a data
frame and returns the model summary.

Some helpful hints:

• Have 2 arguments, one for each column
• In the lm() function, you’ll want to run it by specifying the dataframe and column (like

dataframe$column) rather than just using the name of the column and setting the data
= dataframe argument. It will look similar to how we run the code to get a correlation
coefficient.

Write your function here!
do_regression <- function(independent, dependent) {

Linear model
lm_model <- lm(dependent ~ independent)

Print result
print(summary(lm_model))

}

Test the function with two columns from the hairgrass data set.

Test function on hairgrass data
do_regression(hairgrass$soil_pH, hairgrass$hairgrass_density_m2)

Call:
lm(formula = dependent ~ independent)

Residuals:
Min 1Q Median 3Q Max

-2.95914 -0.66321 0.02364 0.65938 2.64477

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.65039 0.20531 37.263 <2e-16 ***

6

independent 0.04972 0.03605 1.379 0.169

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.026 on 478 degrees of freedom
Multiple R-squared: 0.003963, Adjusted R-squared: 0.001879
F-statistic: 1.902 on 1 and 478 DF, p-value: 0.1685

Exercise 3: Plotting Function

Objective: Create a function to plot a scatter plot between two variables and add a regression
line.

For complicated reasons we won’t get into, we need to do a few important things in this
function to make it work:

• When you write the ggplot code, you’ll need to use aes_string() in place of our usual
aes() function.

• When you test your function with the hairgrass data, you’ll need to put the names
of the two columns in quotation marks (e.g., “penguin_density_m2” instead of pen-
guin_density_m2).

• Don’t worry about adding labels to your plot, but do add a theme.

Write your function here!
plot_data <- function(dataframe, x, y) {

Make plot
plot <- ggplot(dataframe, aes_string(x = x, y = y)) +

geom_point() +
geom_smooth(method = "lm") +
theme_classic()

Return plot
return(plot)

}

Test the function with two columns from the hairgrass data set.

Test function on harigrass data
plot_data(hairgrass, "soil_pH", "p_content")

7

Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
i Please use tidy evaluation idioms with `aes()`.
i See also `vignette("ggplot2-in-packages")` for more information.

`geom_smooth()` using formula = 'y ~ x'

0

5

10

15

4 6 8
soil_pH

p_
co

nt
en

t

Bonus:

Objective: Create a function, plot_data_with_r2, that modifies the scatter plot to include
the R^2 value from the linear regression.

First, outside of the function, calculate the R^2 value for your chosen variables. Then, modify
your plotting function to add an r_squared argument.

Use the annotate() to add the R^2 value to the plot. You can learn more about annotate()
here!

You might also want to learn about the paste() function here to specify what the value you
are putting on the plot represents. It might look something like R squared = 0.4.

**Remember to use aes_string() instead of aes()!

8

https://ggplot2.tidyverse.org/reference/annotate.html
https://www.educative.io/answers/what-is-the-paste-function-in-r

Write your function here!

Calculate R-squared outside the function
r <- cor(x = hairgrass$soil_pH, y = hairgrass$p_content)

Round the value because otherwise it is extremely long!
r_squared <- round(r^2, 6)

Make our function
plot_with_r2 <- function(dataframe, x, y, r_squared) {

Create the plot with points and regression line
plot <- ggplot(dataframe, aes_string(x = x, y = y)) +

geom_point() +
geom_smooth(method = "lm") +
annotate("text", x = 8, y = 20, label = paste("R^2 =", r_squared)) +
theme_classic()

Return plot
return(plot)

}

Test your function here:

Test function on hairgrass data
plot_with_r2(hairgrass, "soil_pH", "p_content", r_squared)

`geom_smooth()` using formula = 'y ~ x'

9

R^2 = 0.000385

0

5

10

15

20

4 6 8
soil_pH

p_
co

nt
en

t

Great Work!

Remember, we will only ask you to make a function like the example at the beginning :)

10

	Introduction
	What is a function?

	Writing Our First Function
	Exercise 1: Simple Function
	Exercise 2: Linear Regression Function
	Exercise 3: Plotting Function
	Bonus:
	Great Work!

